30 research outputs found

    A Simplified Improvement on the Design of QO-STBC Based on Hadamard Matrices

    Get PDF
    yesIn this paper, a simplified approach for implementing QO-STBC is presented. It is based on the Hadamard matrix, in which the scheme exploits the Hadamard property to attain full diversity. Hadamard matrix has the characteristic that diagonalizes a quasi-cyclic matrix and decoding matrix that are diagonal matrix permit linear decoding. Using quasi-cyclic matrices in designing QO-STBC systems require that the codes should be rotated to reasonably separate one code from another such that error floor in the design can be minimized. It will be shown that, orthogonalizing the secondary codes and then imposing the Hadamard criteria that the scheme can be well diagonalized. The results of this simplified approach demonstrate full diversity and better performance than the interference-free QO-STBC. Results show about 4 dB gain with respect to the traditional QO-STBC scheme and performs alike with the earlier Hadamard based QO-STBC designed with rotation. These results achieve the consequent mathematical proposition of the Hadamard matrix and its property also shown in this study

    Towards a Seamless Future Generation Network for High Speed Wireless Communications

    Get PDF
    YesThe MIMO technology towards achieving future generation broadband networks design criteria is presented. Typical next generation scenarios are investigated. The MIMO technology is integrated with the OFDM technology for effective space, time and frequency diversity exploitations for high speed outdoor environment. Two different OFDM design kernels (fast Fourier transform (FFT) and wavelet packet transform (WPT)) are used at the baseband for OFDM system travelling at terrestrial high speed for 800MHz and 2.6GHz operating frequencies. Results show that the wavelet kernel for designing OFDM systems can withstand doubly selective channel fading for mobiles speeds up to 280Km/hr at the expense of the traditional OFDM design kernel, the fast Fourier transform

    Novel Fractional Wavelet Transform with Closed-Form Expression

    Get PDF
    yesA new wavelet transform (WT) is introduced based on the fractional properties of the traditional Fourier transform. The new wavelet follows from the fractional Fourier order which uniquely identifies the representation of an input function in a fractional domain. It exploits the combined advantages of WT and fractional Fourier transform (FrFT). The transform permits the identification of a transformed function based on the fractional rotation in time-frequency plane. The fractional rotation is then used to identify individual fractional daughter wavelets. This study is, for convenience, limited to one-dimension. Approach for discussing two or more dimensions is shown

    On the application of raised-cosine wavelets for multicarrier systems design

    Get PDF
    YesNew orthogonal wavelet transforms can be designed by changing the wavelet basis functions or by constructing new low-pass filters (LPF). One family of wavelet may appeal, in use, to a particular application than another. In this study, the wavelet transform based on raisedcosine spectrum is used as an independent orthogonal wavelet to study multicarrier modulation behaviour over multipath channel environment. Then, the raised-cosine wavelet is compared with other well-known orthogonal wavelets that are used, also, to build multicarrier modulation systems. Traditional orthogonal wavelets do not have side-lobes, while the raised-cosine wavelets have lots of side-lobes; these characteristics influence the wavelet behaviour. It will be shown that the raised-cosine wavelet transform, as an orthogonal wavelet, does not support the design of multicarrier application well like the existing well-known orthogonal wavelets

    Full-Diversity QO-STBC Technique for Large-Antenna MIMO Systems

    Get PDF
    YesThe need to achieve high data rates in modern telecommunication systems, such as 5G standard, motivates the study and development of large antenna and multiple-input multiple-output (MIMO) systems. This study introduces a large antenna-order design of MIMO quasi-orthogonal space-time block code (QO-STBC) system that achieves better signal-to-noise ratio (SNR) and bit-error ratio (BER) performances than the conventional QO-STBCs with the potential for massive MIMO (mMIMO) configurations. Although some earlier MIMO standards were built on orthogonal space-time block codes (O-STBCs), which are limited to two transmit antennas and data rates, the need for higher data rates motivates the exploration of higher antenna configurations using different QO-STBC schemes. The standard QO-STBC offers a higher number of antennas than the O-STBC with the full spatial rate. Unfortunately, also, the standard QO-STBCs are not able to achieve full diversity due to self-interference within their detection matrices; this diminishes the BER performance of the QO-STBC scheme. The detection also involves nonlinear processing, which further complicates the system. To solve these problems, we propose a linear processing design technique (which eliminates the system complexity) for constructing interference-free QO-STBCs and that also achieves full diversity using Hadamard modal matrices with the potential for mMIMO design. Since the modal matrices that orthogonalize QO-STBC are not sparse, our proposal also supports O-STBCs with a well-behaved peak-to-average power ratio (PAPR) and better BER. The results of the proposed QO-STBC outperform other full diversity techniques including Givens-rotation and the eigenvalue decomposition (EVD) techniques by 15 dB for both MIMO and multiple-input single-output (MISO) antenna configurations at 10−3 BER. The proposed interference-free QO-STBC is also implemented for 16×NR and 32×NR MIMO systems, where NR≤2. We demonstrate 8 x 16 and 32 transmit antenna-enabled MIMO systems with the potential for mMIMO design applications with attractive BER and PAPR performance characteristics

    Performance Evaluation of Spatial Modulation and QOSTBC for MIMO Systems

    Get PDF
    YesMultiple-input multiple-output (MIMO) systems require simplified architectures that can maximize design parameters without sacrificing system performance. Such architectures may be used in a transmitter or a receiver. The most recent example with possible low cost architecture in the transmitter is spatial modulation (SM). In this study, we evaluate the SM and quasi-orthogonal space time block codes (QOSTBC) schemes for MIMO systems over a Rayleigh fading channel. QOSTBC enables STBC to be used in a four antenna design, for example. Standard QO-STBC techniques are limited in performance due to self-interference terms; here a QOSTBC scheme that eliminates these terms in its decoding matrix is explored. In addition, while most QOSTBC studies mainly explore performance improvements with different code structures, here we have implemented receiver diversity using maximal ratio combining (MRC). Results show that QOSTBC delivers better performance, at spectral efficiency comparable with SM

    A Multi-Antenna Design Scheme based on Hadamard Matrices for Wireless Communications.

    Get PDF
    YesA quasi-orthogonal space time block coding (QO-STBC) scheme that exploits Hadamard matrix properties is studied and evaluated. At first, an analytical solution is derived as an extension of some earlier proposed QO-STBC scheme based on Hadamard matrices, called diagonalized Hadamard space-time block coding (DHSBTC). It explores the ability of Hadamard matrices that can translate into amplitude gains for a multi-antenna system, such as the QO-STBC system, to eliminate some off-diagonal (interference) terms that limit the system performance towards full diversity. This property is used in diagonalizing the decoding matrix of the QOSTBC system without such interfering elements. Results obtained quite agree with the analytical solution and also reflect the full diversity advantage of the proposed QO-STBC system design scheme. Secondly, the study is extended over an interference-free QO-STBC multi-antenna scheme, which does not include the interfering terms in the decoding matrix. Then, following the Hadamard matrix property advantages, the gain obtained (for example, in 4x1 QO-STBC scheme) in this study showed 4-times louder amplitude (gain) than the interference-free QOSTBC and much louder than earlier DHSTBC for which the new approach is compared with

    Multi-Antenna OFDM System Using Coded Wavelet with Weighted Beamforming

    Get PDF
    yesA major drawback in deploying beamforming scheme in orthogonal frequency division multiplexing (OFDM) is to obtain the optimal weights that are associated with information beams. Two beam weighting methods, namely co-phasing and singular vector decomposition (SVD), are considered to maximize the signal beams for such beamforming scheme. Initially the system performance with and without interleaving is investigated using coded fast Fourier transform (FFT)-OFDM and wavelet-based OFDM. The two beamforming schemes are applied to the wavelet-based OFDM as confirmed to perform better than the FFT-OFDM. It is found that the beam-weight by SVD improves the performance of the system by about 2dB at the expense of the co-phasing method. The capacity performances of the weighting methods are also compared and discussed
    corecore